

ATLAS and CMS B Physics Prospects

Pratibha Vikas

University of Minnesota/CMS

3-7 December, 1999 BCP3, Taipei

- Overview of ATLAS and CMS physics studies
- CP violation studies
- $lacktriangledown B^0_s$ sector
 - B_s^0 Oscillation measurements
- Rare decays
- Conclusions

Introduction

- ◆ ATLAS and CMS primarily conceived and optimised for high-luminosity LHC environment (physics beyond the Standard Model, Higgs searches)
- ◆ First three years of low luminosity operation will allow investigation of B physics issues influencing their design (some rare decays possible even at high luminosity)
- ♦ Expected LHC luminosity in first three years

$$\mathcal{L} \sim 10^{33} cm^{-2} s^{-1}$$
 giving $10^4 pb^{-1}/\mathrm{year}$

- \Rightarrow Expect $10^{12}~b\bar{b}$ events/year with millions fully reconstructed
- Enormous statistics and full spectrum open up rich possibilities for B physics on CMS and ATLAS
- Drawback little or no hadron identification but can be overcome by good mass resolution in some cases (e.g. CDF)
- lacktriangle All studies done with Pythia assuming $\sigma_{b\bar{b}}=500\mu b$

The ATLAS Detector

- lacktriangle Inner detector tracking $|\eta| < 2.5$ and muon tracking $|\eta| < 2.7$
- Level 1 trigger $p_t^{\mu} > 6$ GeV, $|\eta| < 2.4$
- K^0 reconstruction efficiency $\sim 75\%$ (R < 25 cm)
- lacktriangle Proper time resolution $(B^0_s o D_s \pi)$: 0.073 ps
- lacktriangledown Mass resolution $(B_d^0 o J/\psi K_s^0, J/\psi o \mu \mu)$: 19 MeV

- Efficient μ detection upto $|\eta < 2.4|$
- lacktriangle Level 1 trigger uses both the muons and calorimetric information with η dependent thresholds:

$$\mu > 7$$
, $(\mu, \mu) > 2 - 4$, $(\mu, e) > (2 - 4, 7)$, $(\mu, e_b) > (2 - 4, 4)$, $e/\gamma > 15$, $e_b > 10$, $(e_b, e_b) > 5$

- $\ensuremath{\blacklozenge}$ Overall K^0 reconstruction efficiency $\sim 35\%$
- lacktriangle Proper time resolution $(B_s^0 o D_s \pi)$: $\sim 8\%$
- lacktriangledown Mass resolution $(B_d^0 o J/\psi K_s^0, J/\psi o \mu\mu)$: 20 MeV

ATLAS/CMS B Physics Programme

♦ What is possible for ATLAS and CMS?

Channel	Interest
$B_d o J/\psi K_s^0$	eta
$B_d o \pi\pi$	lpha
$B_s \to K^+K^-$	γ
$B_s^0 o D_s \pi$	Δm_s
$B_s^0 \to J/\psi \phi$	$\delta\gamma$
$B_{s,d} \to \mu\mu, X\mu\mu$	New Physics

- Almost all these channels very rare but not at LHC precision measurements possible
- In addition, precision measurements of B hadrons mass, lifetime, polarisation (B_c, Λ_b)

B factories will study B_d and B_u in detail but studies of B_c , B_s and b baryons only possible at hadron machines

With three years luminosity (30 fb^{-1}), expect:

Decay mode	Dranching traction	IN OF EVERILS
$B_d^0 o \pi\pi$	0.7×10^5	6500
$B_d^0 \stackrel{\circ}{\to} J/\psi K_s^0$	4.45×10^{-4}	630 000
$B_s^0 o D_s \pi$	3.0×10^{-3}	6 800
$B_s^0 \to J/\psi \phi$	9.3×10^{-4}	300 000
$B_s^0 o D_s a_1$	6.0×10^{-3}	3 600
$B_d^0 o D_s a_1$	$< 2.6 \times 10^{-3}$	5 900
$\Lambda_b o J/\psi \Lambda_0$	3.7×10^{-4}	75 000
$B_c \to J/\psi \pi$	0.2×10^{-2}	12 000
$B_c \to J/\psi \mu \nu$	0.2×10^{-2}	300 000(inclusive)

Decay mode Branching fraction N of events

Similar statistics in CMS

_ Flavour Tagging

Knowledge of hadron flavour at birth necessary for most CP violation measurements

Opposite side lepton tag:

$$\begin{array}{ccc} & \text{ATLAS} & \text{CMS} \\ \text{Efficiency} & \sim 4\%(e+\mu) & \sim 4\% \\ D & \sim 0.52(\mu), 0.46(e) & 0.44 \end{array}$$

• Same side pion(B^{**} +fragmentation):

$$\begin{array}{ccc} & \text{ATLAS} & \text{CMS} \\ \text{Efficiency} & \sim 82\% (\mu 6, \mu 3), 80\% (e, e) & \sim 21\% \\ D & \sim 0.16 (\mu 6, \mu 3), 0.14 (e, e) & 0.32 \end{array}$$

◆ Jet charge - same(ATLAS) and opposite(CMS) side:

$$\begin{array}{ccc} & \text{ATLAS} & \text{CMS} \\ \text{Efficiency} & \sim 64\% (\mu 6, \mu 3), 71\% (e, e) & \sim 56\% \\ D & \sim 0.12 (\mu 6, \mu 3), 0.12 (e, e) & 0.16 \end{array}$$

Results comparable to CDF

$$B_d^0 o J/\psi K_s^0$$
 .

- $\bullet \ \sin 2\beta \ {\rm from} \ B_d^0 \to J/\psi K_s^0$ is 'gold plated' CP violation channel
- lacktriangle Excellent measurements expected from $\Upsilon(4S)$ and Tevatron

$$\rightarrow \sigma_{\sin 2\beta} < 0.05$$
 by 2005

- ◆ LHC statistics will allow for true precision measurement
- ♦ Events in 1 year:

 $\begin{array}{cccc} & \text{ATLAS} & \text{CMS} \\ \text{Lepton tag} & 11 \text{ K} & 27 \text{K} \\ B^{**} \text{ tag} & 134 \text{ K} & 22 \text{K} \end{array}$

ATLAS CMS Sensitivity 0.017 0.018

$$B_d^0 \to \pi\pi$$

- lacktriangle Traditionally CP asymmetry in this channel seen as primary method to measure $\sin 2\alpha$
- lacktriangle However, B factories will be hampered by low branching ratio ($\sim 10^{-5}$) $\to < 1000$ events total by 2005
- Much better prospects at LHC assuming 0.7×10^{-5} :

$$N_{evt}/{
m year}$$
 ATLAS CMS $N_{evt}/{
m year}$ 2.2K 1.7K

Two body background with own CP asymmetry a problem.

- ◆ ATLAS use dE/dx info, proper time, event flavour and invariant mass to reconstruct event by event likelihood fit
- ullet Fit CP asymmetries for signal and backgound to obtain $\delta(\alpha)\sim 2^\circ$ (CMS sensitivity $\delta(\alpha)\sim 3^\circ$)
- Theoretical uncertainties?

$lue{B}^0_s$ Oscillation

- $lacktriangledown B^0_s$ physics the 'Eldorado' of LHC era
- ♦ In the Standard Model:

$$\frac{\Delta m_{B_s^0}}{\Delta m_{B_d^0}} = \frac{m_{B_s^0}}{m_{B_d^0}} \frac{\eta_s}{\eta_d} \frac{F_s}{F_d} \frac{|V_{ts}|^2}{|V_{td}|^2}$$

- $\frac{\Delta \Gamma_s}{\Delta m_{B_s^0}} = (5.6 \pm 2.6) \times 10^{-3} \rightarrow \text{from a direct}$ measurement of $\Delta \Gamma_{B_s^0}$ indirect information on $\Delta m_{B_s^0}$ can be obtained
- The two measurements are complimetary higher $\Delta m_{B^0_s}$ more difficult to measure but easier to measure $\Delta \Gamma_s$
- Mixing in $B_s^0 \bar{B}_s^0$ system studied through time-dependent asymmetry between B_s^0 at time t=0 that have oscillated (R_-) or $not(R_+)$ to \bar{B}_s^0 at time t:

$$A = \frac{R_{+}(t) - R_{-}(t)}{R_{+}(t) + R_{-}(t)}$$

- ullet $\Delta m_{B^0_s}$ is 2π times the oscillation frequency
- lacktriangledown Best channels are exclusive flavour specific final states(like $B^0_s \to D^-_s \pi^+$)
- Asymmetry given by:

$$A = \frac{\cos \Delta m_{B_s^0} t}{\cosh \frac{\Delta \Gamma_s}{2} t}$$

B_s^0 Oscillation Sensitivity $lue{}$

 Δm_s observation potential in one year:

ATLAS CMS Proper time resolution 50 fs(60%), 93 fs(40%) 65 fs 5σ measurement upto 30 ps $^{-1}$ 22 ps $^{-1}$ 95% C.L. exclusion 31 ps $^{-1}$

Adding more channels will further improve the sensitivity

$$B_s^0 \to J/\psi \phi$$

- Only a small CP asymmetry predicted in the Standard Model (sizeable effect will be a clear signal of new physics) - measurement marginal
- Can be used various studies:
 - $\Delta\Gamma_s = \Gamma_H \Gamma_L$, the difference in the width of CP-even (B_s^L) and CP-odd (B_s^H) can be 20% of average width $\Gamma_s = (\Gamma_H \Gamma_L)/2$
 - lacktriangle Two independent CP amplitudes $A_{||}$ and A_{\perp}
 - The strong phase differences δ_2 , δ_1
 - The weak phase difference ζ
 - The B_s^0 mixing parameter $x_s = \Delta m_s/\Gamma_s$

$$N_{evt} \ (\text{1 year}) \qquad \sim 10^5 \qquad \sim 1.5 \times 10^5 \\ B_s^0 \ \text{mass resolution(MeV)} \qquad 27 \qquad \qquad 10 \\ \text{Proper time resolution(fs)} \qquad 63 \qquad \qquad 68 \\ \text{B/(S+B)} \qquad \sim 0.13 \qquad \sim 0.01$$

$\Delta m_{B_s^0}$ from $B_s^0 o J/\psi \phi$ (CMS)

- $lacktriangledown \Delta m_{B^0_s}$ deduced by a $\Delta \Gamma_{B^0_s}$ measurement
- $\Phi \ \Delta \Gamma_{B^0_s}$ measured from untagged samples of $B^0_s \to J/\psi \phi$ decays
 - CP eigenstates are separated and their lifetimes measured
- lacktriangle Possible to measure x_s up to 50 and even beyond
 - lacktriangle Good agreement between generated and measured x_s
 - No degradation at high x_s

_ Rare Decays $B^0_{d,s} o \mu \mu(X)$ **_**

◆ Rare leptonic and semileptonic decays sensitive to new physics → may give indications in the first year(s) of LHC running

- lacktrianglet Possibilities to measure branching ratios, $|V_{td}|/V_{ts}|$, influence of form factors on braching ratios and dynamics of decays
- Expected number of events in three years:

$$\begin{array}{cccccc} & & \text{ATLAS} & \text{CMS} \\ B_d^0 \to \mu \mu & & 4(93) & 1.1(0.7) \\ B_s^0 \to \mu \mu & & 27(93) & 21(\leq 3) \\ B_d^0 \to \mu \mu \rho & & 220(950) & 350(340) \\ B_d^0 \to \mu \mu \phi & & 410(140) & 1200(70) \\ B_d^0 \to \mu \mu K^{*0} & 2000(290) & 4200(435) \end{array}$$

Possible to search for purely muonic decays at high luminosity - expectations in 1 year:

$$B_d^0 o \mu \mu$$
 14(660) $B_s^0 o \mu \mu$ 92(660) 26(\leq 6.4)

$$B_{d,s}^0 o \mu \mu X$$
 (ATLAS)

 $\ \, \mbox{ } \mbox{ } B^0_d \rightarrow K^{*0} \mu \mu$ mass reconstruction with three years run:

- Forward-backward asymmetry sensitive to meson transition form factors
- \bullet Sensitivity of A_{FB} to Wilson coefficients:

lacktriangle Possible to measure A_{FB} with 5% and $|V_t d|/|V_{ts}|$ with 14% accuracy

◆ Thanks to their good mass and proper time resolutions, ATLAS and CMS offer enormous potential for B physics

 \bullet B physics programme complimentary to B factories (B_s^0 , B_c , b baryons, rare decays)

Some measurements competitive with dedicated B physics experiments